Updated on 2024/06/13

写真a

 
NOSE Toshihiro
 
Organization
Faculty of Engineering Department of Information Electronics Associate Professor
Graduate School of Engineering Master's program Information Electronics Associate Professor
Title
Associate Professor
Contact information
メールアドレス
External link

Research Interests

  • 局所ゼータ関数

  • ニュートン多面体

  • トーリックブローアップ

  • 特異点解消

  • 平坦関数

  • 振動積分

Research Areas

  • Natural Science / Basic analysis

  • Natural Science / Basic analysis

Professional Memberships

  • 日本数学会

  • THE MATHEMATICAL SOCIETY OF JAPAN

      More details

Papers

  • Meromorphy of local zeta functions in smooth model cases Reviewed

    J. Kamimoto and T. Nose

    J. Funct. Anal.   278 ( 6 )   108408, 25 pp.   2020.4

  • Nonpolar singularities of local zeta functions in some smooth case Reviewed

    J. Kamimoto and T. Nose

    Trans. Amer. Math. Soc   372   661 - 676   2019.7

  • Asymptotic limit of oscillatory integrals with certain smooth phases Reviewed

    J. Kamimoto and T. Nose

    RIMS Kokyuroku Bessatsu   B63   103 - 114   2017.5

  • Newton polyhedra and weighted oscillatory integrals with smooth phases Reviewed

    J. Kamimoto and T. Nose

    Trans. Amer. Math. Soc   368   5301 - 5361   2016.8

  • On the asymptotic expansion of oscillatory integrals with smooth phases in two dimensions Reviewed

    J. Kamimoto and T. Nose

    RIMS Kokyuroku Bessatsu   B57   141 - 157   2016.5

  • Toric resolution of singularities in a certain class of $C^{\infty}$ functions and asymptotic analysis of oscillatory integrals Reviewed

    J. Kamimoto and T. Nose

    J. Math. Sci. Univ. Tokyo   23 ( 2 )   425 - 485   2016.2

  • On meromorphic continuation of local zeta functions

    J. Kamimoto and T. Nose

    Complex Analysis and Geometry, Springer Proc. Math. Stat.   144   187 - 195   2015.8

  • On oscillatory integrals with $C^{\infty}$ phases Reviewed

    J. Kamimoto and T. Nose

    RIMS Kokyuroku Bessatsu   B40   31 - 40   2013.4

  • Asymptotic analysis of oscillatory integrals via the Newton polyhedra of the phase and the amplitude Reviewed

    K. Cho, J. Kamimoto and T. Nose

    J. Math. Soc. Japan.   65 ( 2 )   521 - 562   2013.4

  • Asymptotic analysis of weighted oscillatory integrals via Newton polyhedra

    J. Kamimoto and T. Nose

    Proceedings of the 19th ICFIDCAA Hiroshima 2011   3 - 12   2013.3

  • Asymptotics of the Bergman function for semipositive holomorphic line bundles Reviewed

    K. Cho, J. Kamimoto and T. Nose

    Kyushu J. Math.   65   349 - 382   2011.11

  • Meromorphic continuation and non-polar singularities of local zeta functions in some smooth cases Reviewed

    Toshihiro Nose

    Tohoku Math. J.   to appear  

▼display all

Research Projects

  • Local representation of smooth functions and asymptotic analysis in harmonic analysis

    Grant number:19K14563  2019.4 - 2024.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Early-Career Scientists

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\2340000 ( Direct Cost: \1800000 、 Indirect Cost:\540000 )

  • Deepening of potential analysis on nonsmooth domains - Applications to PDE and ideal boundary

    Grant number:17H01092  2017.4 - 2021.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

      More details

    Authorship:Coinvestigator(s)  Grant type:Competitive

    Grant amount:\33150000 ( Direct Cost: \25500000 、 Indirect Cost:\7650000 )

  • Asymptotic analysis in harmonic analysis by using Newton polyhedra

    Grant number:15K17565  2015.4 - 2018.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\2210000 ( Direct Cost: \1700000 、 Indirect Cost:\510000 )

Teaching Experience (On-campus)

  • 2023   Elementary Seminar on Mathematics

  • 2023   Introduction to Information Electronics

  • 2023   Electronic Information Mathematics

  • 2023   Introduction to Mathematical Statistics

  • 2023   Linear Algebra Ⅰ

  • 2023   Linear Algebra Ⅱ

  • 2023   Ordinary Differential Equation

  • 2023   Graduation Study

  • 2023   Seminar in Information Electronics

  • 2022   Electronic Information Mathematics

  • 2022   Elementary Seminar on Mathematics

  • 2022   Introduction to Information Electronics

  • 2022   Linear Algebra Ⅰ

  • 2022   Linear Algebra Ⅱ

  • 2022   Ordinary Differential Equation

  • 2022   Introduction to Mathematical Statistics

  • 2022   Graduation Study

  • 2022   Seminar in Information Electronics

  • 2021   Electronic Information Mathematics

  • 2021   Introduction to Information Electronics

  • 2021   Elementary Seminar on Mathematics

  • 2021   Linear Algebra Ⅰ

  • 2021   Linear Algebra Ⅱ

  • 2021   Ordinary Differential Equation

  • 2021   Introduction to Mathematical Statistics

  • 2021   Graduation Study

  • 2021   Seminar in Information Electronics

  • 2021   Applied Analysis II

  • 2020   Elementary Seminar on Mathematics

  • 2020   Introduction to Information Electronics

  • 2020   Electronic Information Mathematics

  • 2020   Linear Algebra Ⅰ

  • 2020   Linear Algebra Ⅱ

  • 2020   Differential Equation

  • 2020   Introduction to Mathematical Statistics

  • 2020   Graduation Study

  • 2019   Electronic Information Mathematics

  • 2019   Introduction to Information Electronics

  • 2019   Elementary Seminar on Mathematics

  • 2019   Linear Algebra Ⅰ

  • 2019   Linear Algebra Ⅱ

  • 2019   Differential Equation

  • 2019   Introduction to Mathematical Statistics

  • 2019   Graduation Study

  • 2018   Introduction to Information Electronics

  • 2018   Electronic Information Mathematics

  • 2018   Elementary Seminar on Mathematics

  • 2018   Linear Algebra Ⅰ

  • 2018   Linear Algebra Ⅱ

  • 2018   Ordinary Differential Equation

  • 2018   Introduction to Mathematical Statistics

  • 2018   Graduation Study

  • 2017   Elementary Seminar on Mathematics

  • 2017   Introduction to Information Electronics

  • 2017   Electronic Information Mathematics

  • 2017   Linear Algebra I

  • 2017   Linear Algebra II

  • 2017   Ordinary Differential Equation

  • 2017   Introduction to Mathematical Statistics

  • 2017   Graduation Study

  • 2016   Elementary Seminar on Mathematics B

  • 2016   Electronic Information Mathematics

  • 2016   Ordinary Differential Equation

  • 2016   Linear Algebra II

  • 2016   Linear Algebra I

  • 2016   Introduction to Mathematical Statistics

  • 2016   Graduation Study

▼display all